Correlated Tunneling in Intramolecular Carbon Nanotube Quantum Dots
نویسندگان
چکیده
منابع مشابه
Correlated tunneling in intramolecular carbon nanotube quantum dots.
We investigate correlated electronic transport in single-walled carbon nanotubes with two intramolecular tunneling barriers. We suggest that below a characteristic temperature the long-range nature of the Coulomb interaction becomes crucial to determine the temperature dependence of the maximum G(max) of the conductance peak. Correlated sequential tunneling dominates transport yielding the powe...
متن کاملKramers polarization in strongly correlated carbon nanotube quantum dots
Ferromagnetic contacts put in proximity with carbon nanotubes induce spin and orbital polarizations. These polarizations affect dramatically the Kondo correlations occurring in quantum dots formed in a carbon nanotube, inducing effective fields in both spin and orbital sectors. As a consequence, the carbon nanotube quantum dot spectral density shows a fourfold split SU(4) Kondo resonance. Furth...
متن کاملPhonon runaway in carbon nanotube quantum dots
Phonon runaway in carbon nanotube quantum dots" (2008). Other Nanotechnology Publications. Paper 93. We explore electronic transport in a nanotube quantum dot strongly coupled with vibrations and weakly with leads and the thermal environment. We show that the recent observation of anomalous conductance signatures in single-walled carbon nanotube quantum dots ͓B. can be understood quantitatively ...
متن کاملCotunneling renormalization in carbon nanotube quantum dots
We determine the level shifts induced by cotunneling in a Coulomb blockaded carbon nanotube quantum dot using leading-order quasidegenerate perturbation theory within a single nanotube “shell.” It is demonstrated that otherwise degenerate and equally tunnel coupled K and K ′ states are mixed by cotunneling and therefore split up in energy except at the particle-hole-symmetric midpoints of the C...
متن کاملCarbon Nanotube Quantum Dots as Thz Detectors
Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this coll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2002
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.89.196402